题目内容
【题目】如图所示,在ABCD中,点E,F在对角线BD上,且BE=DF,
求证:(1)AE=CF;(2)四边形AECF是平行四边形.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)根据平行四边形对边平行且相等的性质得到AB∥CD且AB=CD,所以∠ABE=∠CDF,利用SAS即可判定△ABE≌△CDF,根据全等三角形的性质即可得结论;(2)根据全等三角形对应角相等得到∠AEB=∠CFD,所以它们的邻补角相等,根据内错角相等,两直线平行即可得证.
试题解析:
证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABE=∠CDF.
在△ABE和△CDF中,,
∴△ABE≌△CDF(SAS),
∴AE=CF.
(2)∵△ABE≌△CDF,
∴∠AEB=∠CFD,
∴∠AEF=∠CFE,
∴AE∥CF,
∵AE=CF,
∴四边形AECF是平行四边形.
练习册系列答案
相关题目
【题目】为了从甲、乙两名选手中选拔一人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:
甲、乙射击成绩统计表
平均数 | 中位数 | 方差 | 命中10环的次数 | |
甲 | 7 | |||
乙 | 1 |
(1)请补全上述图表(请直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁将胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?