题目内容

【题目】如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,点P在优弧上.

(1)求出A,B两点的坐标;

(2)试确定经过A、B且以点P为顶点的抛物线解析式;

(3)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

【答案】(1)A(1-,0),B(1+,0).(2)y=-x2+2x+2.(3)存在D(0,2)使线段OP与CD互相平分.

【解析】

试题分析:(1)根据垂径定理可得出AH=BH,然后在直角三角形ACH中可求出AH的长,再根据C点的坐标即可得出A、B两点的坐标.

(2)根据抛物线和圆的对称性,即可得出圆心C和P点必在抛物线的对称轴上,因此可得出P点的坐标为(1,3).然后可用顶点式二次函数通式来设抛物线的解析式.根据A或B的坐标即可确定抛物线的解析式.

(3)如果OP、CD互相平分,那么四边形OCPD是平行四边形.因此PC平行且相等于OD,那么D点在y轴上,且坐标为(0,2).然后将D点坐标代入抛物线的解析式中即可判定出是否存在这样的点.

试题解析:(1)如图,作CHAB于点H,连接OA,OB,

CH=1,半径CB=2

HB=

故A(1-,0),B(1+,0).

(2)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3),

设抛物线解析式y=a(x-1)2+3,

把点B(1+,0)代入上式,解得a=-1;

y=-x2+2x+2.

(3)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形

PCOD且PC=OD.

PCy轴,

点D在y轴上.

PC=2,

OD=2,即D(0,2).

又D(0,2)满足y=-x2+2x+2,

点D在抛物线上

存在D(0,2)使线段OP与CD互相平分.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网