题目内容

【题目】如图,直线l与⊙O相离,过点O作OA⊥l,垂足为A,OA交⊙O于点B,点C在直线l上,连接CB并延长交⊙O于点D,在直线l上另取一点P,使∠PCD=∠PDC.
(1)求证:PD是⊙O的切线;
(2)若AC=1,AB=2,PD=6,求⊙O的半径r和△PCD的面积.

【答案】
(1)解:连接OD,

∴∠ABC=∠OBD=∠ODB,

∵OA⊥l,

∴∠PCD+∠ABC=90°,

∴∠PCD+∠ODB=90°,

∵∠PCD=∠PDC,

∴∠PDC+∠ODB=90°,即∠ODP=90°,

∴PD是⊙O的切线;


(2)解:∵∠PCD=∠PDC,

∴PC=PD=6,

∴PA=5,

设OB=OF=OD=r,

由PA2+AO2=PD2+OD2可得52+(2+r)2=62+r2

解得:r=

延长AO交⊙O于点F,连接DF,

∵∠ABC=∠DBF、∠BAC=∠BDF=90°,

∴△ABC∽△DBF,

= ,即 =

∴DB=

过点D作DE⊥PC于点E,

∴△CAB∽△CED,

= ,即 =

解得:DE=

∴SPCD= PCDE= ×6× =


【解析】(1)连接OD,知∠ABC=∠OBD=∠ODB,由∠PCD+∠ABC=90°知∠PCD+∠ODB=90°,结合∠PCD=∠PDC可得∠ODP=90°,即可得证;(2)由∠PCD=∠PDC知PC=PD=6、PA=5,根据PA2+AO2=PD2+OD2可得r= ;延长AO交⊙O于点F,连接DF,证△ABC∽△DBF得 = ,即可知DB= ,作DE⊥PC于点E,由△CAB∽△CED知 = ,求得DE= ,从而求得△PCD的面积.
【考点精析】利用切线的判定定理对题目进行判断即可得到答案,需要熟知切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网