题目内容

(1)在条件:①∠C=∠E,②AC=AE中,选择②可得
△ABC≌△ADE
△ABC≌△ADE
.(2)在(1)的条件下,求证:∠CDE=∠BAD.
分析:(1)根据SSS推出三角形全等即可;
(2)根据全等得出∠BAC=∠DAE,求出∠BAD=∠EAC,根据全等三角形性质得出∠E=∠C,根据三角形内角和定理求出∠EAC=∠CDE,即可得出答案.
(2)根据全等得出∠BAC=∠DAE,求出∠BAD=∠EAC,根据全等三角形性质得出∠E=∠C,根据三角形内角和定理求出∠EAC=∠CDE,即可得出答案.
解答:证明:(1)∵在△ABC和△ADE中
∴△ABC≌△ADE,
故答案为:△ABC≌△ADE.
(2)∵△ABC≌△ADE,
∴∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠EAC,
∵△ABC≌△ADE,
∴∠E=∠C,
∵∠AOE=∠DOC,∠E+∠AOE+∠EAC=180°,∠C+∠DOC+∠CDE=180°,
∴∠CDE=∠EAC,
∵∠BAD=∠EAC,
∴∠CDE=∠BAD.
|
∴△ABC≌△ADE,
故答案为:△ABC≌△ADE.

(2)∵△ABC≌△ADE,
∴∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠EAC,
∵△ABC≌△ADE,
∴∠E=∠C,
∵∠AOE=∠DOC,∠E+∠AOE+∠EAC=180°,∠C+∠DOC+∠CDE=180°,
∴∠CDE=∠EAC,
∵∠BAD=∠EAC,
∴∠CDE=∠BAD.
点评:本题考查了全等三角形的性质和判定,三角形面积和定理的应用,主要考查学生的推理能力.

练习册系列答案
相关题目