题目内容
【题目】如图,个全等的等腰三角形的底边在同一条直线上,底角顶点依次重合.连接第一个三角形的底角顶点和第个三角形的顶角顶点交于点,则_________.
【答案】n
【解析】
连接A1An,根据全等三角形的性质得到∠AB1B2=∠A2B2B3,根据平行线的判定得到A1B1∥A2B2,又根据A1B1=A2B2,得到四边形A1B1B2A2是平行四边形,从而得到A1A2∥B1B2,从而得出A1An∥B1B2,然后根据相似三角形的性质即可得到结论.
解:连接A1An,根据全等三角形的性质得到∠AB1B2=∠A2B2B3,
∴A1B1∥A2B2,
又A1B1=A2B2,
∴四边形A1B1B2A2是平行四边形.
∴A1A2∥B1B2,A1A2=B1B2=A2A3,
同理可得,A2A3=A3A4 =A4A5=…= An-1An.
根据全等易知A1,A2,A3,…,An共线,
∴A1An∥B1B2,
∴PnB1B2∽△PnAnA1,
,
又A1Pn+PnB2=A1B2,
∴.
故答案为:n.
【题目】某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现每天的销售量(个与每个商品的售价(元满足一次函数关系,其部分数据如下所示:
每个商品的售价(元 | 30 | 40 | 50 | ||
每天销售量(个 | 100 | 80 | 60 |
(1)求与之间的函数表达式;
(2)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?
【题目】交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量(辆小时)指单位时间内通过道路指定断面的车辆数;速度(千米小时)指通过道路指定断面的车辆速度,密度(辆千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量与速度之间关系的部分数据如下表:
速度v(千米/小时) | ||||||||
流量q(辆/小时) |
(1)根据上表信息,下列三个函数关系式中,刻画,关系最准确是_____________________.(只填上正确答案的序号)
①;②;③
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?
(3)已知,,满足,请结合(1)中选取的函数关系式继续解决下列问题:市交通运行监控平台显示,当时道路出现轻度拥堵.试分析当车流密度在什么范围时,该路段将出现轻度拥堵?