题目内容
【题目】如图:两个观察者从A,B两地观测空中C处一个气球,分别测得仰角为45°和60°,已知A,B两地相距200m,当气球沿着与AB平行地漂移40秒后到达C1,在A处测得气球的仰角为30度.
求:(1)气球漂移的平均速度(结果保留3个有效数字);
(2)在B处观测点C1的仰角(精确到度).
【答案】(1)速度为200÷40≈8.66m/s;(2)仰角为37°.
【解析】试题分析:首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造等量关系,进而可求出答案.
试题解析:解:(1)作CD⊥AB,C1E⊥AB,垂足分别为D、E.在Rt△ACD中,AD=CD÷tan∠CAD=CD÷tan45°=CD;在Rt△BCD中,BD=CD÷tan∠CBD=CD÷tan60°=;
又因为AB=AD﹣BD=200,所以CD﹣=200,解得:CD=100(3),又CD⊥AB,C1E⊥AB,CC1∥AB,所以C1E=CD,DE=CC1.在Rt△AEC1中,AE=C1E÷tan∠C1AE=100(3+)÷tan30°=300(),所以CC1=DE=AE﹣AD=300()﹣100(3+),即CC1=200,速度为200÷40≈8.66m/s;
(2)由(1)知BD==100(1),所以tan∠C1BE==≈0.7637,所以∠C1BE=37°,即仰角为37°.
【题目】某区举行“中华诵经典诵读”大赛,小学、中学组根据初赛成绩,各选出5名选手组成小学代表队和中学代表队参加市级决赛,两个代表队各选出的5名选手的决赛成绩分别绘制成下列两个统计图
根据以上信息,整理分析数据如下:
平均数(分 | 中位数(分 | 众数(分 | |
小学组 | 85 | 100 | |
中学组 | 85 |
(1)写出表格中,,的值: , , .
(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?
(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较稳定.