题目内容
【题目】如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正确的结论是_____.
【答案】①②④
【解析】
①连接EG.根据等角的余角相等即可得到结果,故①正确;②由BE、AG分别是∠ABC、∠DAC的平分线.得到∠ABF=∠EBD.由于∠AFE=∠FAB+∠FBA,∠AEG=∠C+∠EBD,得到∠AFE=∠AEF,根据等腰三角形的性质可得②正确;③如果∠EBC=∠C,则∠C=∠ABC,由于∠BAC=90°那么∠C=30°,但∠C≠30°,故③错误;④证明△ABN≌△GBN,得到AN=GN,证出四边形AFGE是平行四边形,得到GF∥AE,故④正确;⑤由AE=AF,AE=FG,而△AEF不是等边三角形,得到EF≠AE,于是EF≠FG,故⑤错误.
①连接EG.
∵∠BAC=90°,AD⊥BC.
∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°.
∴∠ABC=∠DAC,∠BAD=∠C,故①正确;
②∵BE、AG分别是∠ABC、∠DAC的平分线,
∴∠ABF=∠EBD.
∵∠AFE=∠FAB+∠FBA,∠AEG=∠C+∠EBD,
∴∠AFE=∠AEF.
∴AF=AE,故②正确;
③如果∠EBC=∠C,则∠C=∠ABC,
∵∠BAC=90°,
那么∠C=30°,但∠C≠30°,故③错误;
④∵AG是∠DAC的平分线,
∴AN⊥BE,FN=EN,
在△ABN与△GBN中,∵
∴△ABN≌△GBN.
∴AN=GN.
∴四边形AFGE是平行四边形.
∴GF∥AE.
即GF∥AC.故④正确;
⑤∵AE=AF,AE=FG,
而△AEF不是等边三角形,
∴EF≠AE.
∴EF≠FG,故⑤错误.
故答案为:①②④.