题目内容
【题目】如图,点E是直线AB、CD外一点,直线AB和ED相交于点F.
(1)如果AB∥CD,那么∠D=∠B+∠E吗?
(2)如果∠D=∠B+∠E,那么AB与CD平行吗?
【答案】(1)相等;(2)平行
【解析】
(1)由平行线的性质可得∠D=∠EFA,由外角的性质可得∠EFA=∠B+∠E,进而可证结论成立;
(2)由外角性质可得∠EFA=∠B+∠E,结合D=∠B+∠E,可证∠D=∠EFA,进而可证结论成立.
答案:(1)相等,(2)平行,
解析:(1)因为AB//CD(已知),
所以∠D=∠EFA(两直线平行,同位角相等),
因为∠EFA=∠B+∠E(一个外角等于不相邻的两个内角之和),
所以∠D=∠B+∠E(等量代换);
(2)因为∠D=∠B+∠E(已知),
又因为∠EFA=∠B+∠E(一个外角等于不相邻的两个内角之和),
所以∠D=∠EFA(等量代换),
所以AB//CD(同位角相等,两直线平行).
练习册系列答案
相关题目
【题目】“品中华诗词,寻文化自信”.某校组织全校1000名学生举办了第二届“中华诗词大赛”的初赛,从中抽取部分学生的成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.
频数分布统计表
组别 | 成绩(分) | 人数 | 百分比 |
8 | 20% | ||
16 | |||
30% | |||
4 | 10% |
频数分布直方图
请观察图表,解答下列问题:
(1)表中__________,__________;
(2)补全频数分布直方图;
(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,那么请你估计该校进入决赛的学生大约有多少人?