题目内容

【题目】无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.

(1)求日均销售量p(桶)与销售单价x(元)的函数关系;

(2)若该经营部希望日均获利1350元,那么销售单价是多少?

【答案】(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.

【解析】

(1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k≠0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)p-250=1350,由(1)得到p=-50x+850,于是有(x-5)(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7≤x≤12x的值为所求;

(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,

根据题意得

解得k=﹣50,b=850,

所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;

(2)根据题意得一元二次方程 (x﹣5)(﹣50x+850)﹣250=1350,

解得x1=9,x2=13(不合题意,舍去),

∵销售单价不得高于12元/桶,也不得低于7元/桶,

∴x=13不合题意,

答:若该经营部希望日均获利1350元,那么销售单价是9元.

练习册系列答案
相关题目

【题目】数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究由数思形,以形助数的方法在解决代数问题中的应用.

1)探究的几何意义:如图①,在直角坐标系中,设点M的坐标为(xy),过MMPx轴于P,作MQy轴于Q,则P点坐标为(x0)Q点坐标为(0y),即OP|x|OQ|y|,在△OPM中,PMOQ|y|,则MO,因此,的几何意义可以理解为点M(xy)与点O(00)之间的距离OM

的几何意义可以理解为点N1   (填写坐标)与点O(00)之间的距离N1O

②点N2(5,﹣1)与点O(00)之间的距离ON2   

(2)探究的几何意义:如图②,在直角坐标系中,设点A′的坐标为(x﹣1,y﹣5),由探究(1)可知,A′O=,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(x,y),点B的坐标为(1,5),因为AB=A′O,所以AB=,因此的几何意义可以理解为点A(x,y)与点B(1,5)之间的距离.

3)探究的几何意义:请仿照探究二(2)的方法,在图③中画出图形,那么的几何意义可以理解为点C   (填写坐标)与点D(xy)之间的距离.

4)拓展应用:①的几何意义可以理解为:点A(xy)与点E(1,﹣4)的距离与点A(xy)与点F   (填写坐标)的距离之和.

的最小值为   (直接写出结果)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网