题目内容
【题目】如图,四边形ABCD为正方形,边长为4,点F在AB边上,E为射线AD上一点,正方形ABCD沿直线EF折叠,点A落在G处,已知点G恰好在以AB为直径的圆上,则CG的最小值等于( )
A.0
B.2
C.4﹣2
D.2 ﹣2
【答案】D
【解析】解:如图所示:
由翻折的性质可知:AF=FG,AG⊥OE,∠OAE=∠OGE=90°.
∵AF=FG,AG⊥OE,
∴点O是圆半圆的圆心.
∴OG=OA=OB=2.
在△OBC中,由勾股定理可知:OC= =2 .
∵当点O、G、C在一条直线上时,GC有最小值,
∴CG的最小值=OC﹣OG=2 ﹣2.
所以答案是:D.
【考点精析】本题主要考查了线段的基本性质和勾股定理的概念的相关知识点,需要掌握线段公理:所有连接两点的线中,线段最短.也可简单说成:两点之间线段最短;连接两点的线段的长度,叫做这两点的距离;线段的大小关系和它们的长度的大小关系是一致的;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.
练习册系列答案
相关题目
【题目】李红在学校的研究性学习小组中负责了解初一年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).
测试成绩 | 合计 | |||||
频数 | 3 | 27 | 9 | m | 1 | n |
请你结合图表中所提供的信息,回答下列问题:
(1)表中m= , n=;
(2)请补全频数分布直方图;
(3)在扇形统计图中, 这一组所占圆心角的度数为度;
(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校初一年级女生掷实心球的成绩达到优秀的总人数.