题目内容

如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,下面的式子错误的是(  )
分析:根据直角三角形的性质和相似三角形的判定可知△ADC∽△CDB∽△ACB,利用相似三角形的性质:对应边的比值相等即可的到问题的答案.
解答:解:∵∠ACB=90°,CD⊥AB垂足为D,
∴△ADC∽△CDB∽△ACB,
AC
AB
=
AD
AB
BC
AB
=
BD
BC
CD
BD
=
AD
CD

∴AC2=AD•AB,BC2=BD•AB,CD2=AD•BD,
故选项A、C、D都正确,不符合题意;
故选项B错误;
故选B.
点评:本题考查了相似三角形的判定和性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网