题目内容
【题目】如图,在平面直角坐标系中,直线EF交x,y轴子点F,E,交反比例函数(x>0)图象于点C,D,OE=OF=,以CD为边作矩形ABCD,顶点A与B恰好落在y轴与x轴上.
(1)若矩形ABCD是正方形,求CD的长;
(2)若AD:DC=2:1,求k的值.
【答案】(1);(2)k=12
【解析】(1)根据等腰三角形的性质以及勾股定理可得EF的长,继而根据正方形的性质即可得DE=DC=CF,从而即可求得CD的长;
(2)由四边形ABCD是矩形,可得AD=BC,根据(1)得:AD=DE,BC=FC,且 2CD=AD,从而可得 2CD=DE=CF,根据DE+CD+FC=EF,继而可求得DE的长,作 DG⊥AE,垂足为点 G,在等腰直角三角形 ADE 中,求得DG=EG = 2,继而求得OG长,从而可得点D( 2, 3) ,即可求得k.
(1)∵四边形ABCD是正方形,
∴AB=BC=CD=AD,
∠ADC=∠BCD=90°,
∴∠ADE=∠BCF=90°,
∵OE=OF= 5,
又∵∠EOF=90°,
∴∠OEF=∠OFE=45°,FE=10,
∴CD=DE=AD=CB=CF=;
(2)∵四边形ABCD是矩形,
∴AD=BC,
∵由(1)得:AD=DE,BC=FC,且 2CD=AD,
∴2CD=DE=CF,
∵DE+CD+FC=EF,
∴DE= EF =4,
作 DG⊥AE,垂足为点 G,
由(1)得在等腰直角三角形 ADE 中,DG=EG=DE = 2,
∴OG=OE-EG= 5- 2= 3,
∴D( 2, 3) ,
得:k=12.
练习册系列答案
相关题目