题目内容

【题目】如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD= ,求AD的长.

【答案】
(1)证明:∵AD⊥BC,∠BAD=45°,

∴△ABD是等腰直角三角形,

∴AD=BD,

∵BE⊥AC,AD⊥BC

∴∠CAD+∠ACD=90°,

∠CBE+∠ACD=90°,

∴∠CAD=∠CBE,

在△ADC和△BDF中,

∴△ADC≌△BDF(ASA),

∴BF=AC,

∵AB=BC,BE⊥AC,

∴AC=2AE,

∴BF=2AE;


(2)解:∵△ADC≌△BDF,

∴DF=CD=

在Rt△CDF中,CF= = =2,

∵BE⊥AC,AE=EC,

∴AF=CF=2,

∴AD=AF+DF=2+


【解析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证;(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网