题目内容
【题目】已知△ABC是等腰三角形,且∠A=40°,那么∠ACB的外角的度数是
A. 110° B. 140° C. 110°或140° D. 以上都不对
【答案】D
【解析】
利用等腰三角形的性质,得到两底角相等,结合三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和,可直接得到结果.
解:∵等腰三角形两底角相等,三角形的任一外角等于和它不相邻的两个内角之和,
∴当顶角∠A=40°时,则∠ACB=∠B=(180°-40)=70°,
∴∠ACB的外角的度数是180°-70°=110°,
∴当底角∠A=40°时,∠B=40°,则∠ACB的外角的度数为2∠A=2×40=80°,
当底角∠A=40°时,∠ACB=40°,则∠ACB的外角的度数为180-40=140°.
故选:D.
练习册系列答案
相关题目