题目内容

如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.
(1)求证:BF=DF;
(2)连接CF,请直接写出BE∶CF的值(不必写出计算过程).
(1)证明见解析;(2).

试题分析:(1)由正方形的性质可证△DGF≌△BEF,即证DF=BF.(2)(2)如图,可设AB=3,AE=2,则BE=1;延长GF交BC于点H,延长EF交CD于点G,则四边形FGCH为正方形,CF为这个正方形的对角线,FH为这个正方形的边,所以CF:FH=;又因为FH=BE,所以BE∶CF=.

试题解析:证明:(1)∵四边形ABCD和AEFG都是正方形,
∴AB=AD,AE=AG=EF=FG,∠BEF=∠DGF=90°,       1分
∵BE=AB-AE,DG=AD-AG,∴BE= DG,       2分
∴△BEF≌△DGF.
∴BF=DF.         4分
(2)BE∶CF=.         6分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网