题目内容
【题目】如图,在正方形中,点是对角线上的一点,点在的延长线上,且,交于点.
(1)证明:;
(2)如图,把正方形改为菱形,其它条件不变,当时,连接,试探究线段与线段的数量关系,并说明理由.
【答案】(1)证明见解析;(2)AP=CE,理由见解析.
【解析】
(1)先证出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;
(2)根据已知和(1)易证△ADP≌△CDP,得PC=PE,∠DAP=∠DCP,由PA=PE,得到∠DAP=∠AEP,∠DCP=∠E,而可得∠CDE=60°,再结合三角形内角和定理可得∠EPC=60°,△EPC为等边三角形,即可得到结论;
解:(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
∵PB=PB,
∴△ABP≌△CBP(SAS),
∴PA=PC,
∵PA=PE,
∴PC=PE;
(2)解:AP=CE;
理由如下:
在菱形ABCD中,AD=DC,∠ADP=∠CDP=60°,
∵PD=PD,
∴△ADP≌△CDP(SAS),
∴PA=PC,∠DAP=∠DCP,
∵PA=PE,
∴PC=PE,
∴∠DAP=∠DEP,
∴∠DCP=∠DEP
∵∠CFP=∠EFD
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠DEP,
即∠CPE=∠CDE=180°﹣∠ADC=180°﹣120°=60°,
∴△EPC是等边三角形,
∴PC=CE,
∴ AP=CE.
【题目】下表显示了同学们用计算机模拟随机投针实验的某次实验的结果.
投针次数n | 1000 | 2000 | 3000 | 4000 | 5000 | 10000 | 20000 |
针与直线相交的次数m | 454 | 970 | 1430 | 1912 | 2386 | 4769 | 9548 |
针与直线相交的频率p=
| 0.454 | 0.485 | 0.4767 | 0.478 | 0.4772 | 0.4769 | 0.4774 |
下面有三个推断:
①投掷1000次时,针与直线相交的次数是454,针与直线相交的概率是0.454;
②随着实验次数的增加,针与直线相交的频率总在0.477附近,显示出一定的稳定性,可以估计针与直线相交的概率是0.477;
③若再次用计算机模拟此实验,则当投掷次数为10000时,针与直线相交的频率一定是0.4769.
其中合理的推断的序号是:_____.