题目内容
【题目】如图,已知二次函数的图像与轴的一个交点为 ,与轴的交点为,过的直线为.
(1)求二次函数的解析式及点的坐标;
(2)直接写出满足时,的取值 ;
(3)在两坐标轴上是否存在点,使得是以为底边的等腰三角形?若存在,求出的坐标;若不存在,说明理由.
【答案】(1),;(2)或;(3),
【解析】
(1)根据待定系数法,可得函数解析式,根据自变量为零,可得点坐标;
(2)根据题意可知,即,再根据一次函数图象在上方法人部分是不等式的解集,可得答案;
(3)根据线段垂直平分线上的点到线段两点间的距离相等,可得在线段的垂直平分线上,根据直线,可得的垂直平分线,根据自变量来为零,可得在轴上,根据函数值为零,可得在轴上.
(1)解:将代入得:
∴,
(2)
即:
即:时,或
(3)直线的解析式为,
的中点为,
的垂直平分线为,
当时,,,
当时,,.
综上所述:,,使得是以为底边的等腰三角形.
练习册系列答案
相关题目
【题目】某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 18000元 |
第二周 | 4台 | 10台 | 31000元 |
(进价、售价均保持不变,利润=销售总收入进货成本)
(1)求A、B两种型号的空调的销售单价;
(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?