题目内容
【题目】如图,已知点E、F在直线AB上,点M在射线CE上,点G在线段CD上,ED与FG交于点H,∠C=∠3,∠1=∠2.
(1)试判断∠AED与∠D之间的数量关系,并说明理由;
(2)若∠EHF=80°,∠D=30°,求∠AEM的度数.
【答案】(1)∠AED+∠D=180°,理由见解析;(2)∠AEM=110°.
【解析】
(1)∠AED+∠D=180°,理由是:由∠1=∠2,根据同位角相等,两直线平行得EC∥FG,根据两直线平行,同位角相等得∠C=∠FGD,因为∠C=∠3,所以∠FGD=∠3,再根据内错角相等,两直线平行可得AB∥CD,进一步即得结论;
(2)由EC∥FG,根据两直线平行,内错角相等得∠1=∠EHF=80°,由AB∥CD,根据两直线平行,内错角相等得∠BED=∠D=30°,于是可得∠CEB的度数,再根据对顶角相等即得结果.
解:(1)∠AED+∠D=180°,理由如下:
∵∠1=∠2,
∴EC∥FG,
∴∠C=∠FGD,
∵∠C=∠3,
∴∠FGD=∠3,
∴AB∥CD,
∴∠AED+∠D=180°.
(2)∵EC∥FG,
∴∠1=∠EHF=80°,
∵AB∥CD,
∴∠BED=∠D=30°,
∴∠CEB=∠1+∠BED=80°+30°=110°,
∴∠AEM=∠CEB=110°.
【题目】小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为l800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:
制作普通花束(束) | 制作精致花束(束) | 所用时间(分钟) |
10 | 25 | 600 |
15 | 30 | 750 |
请根据以上信息,解答下列问题:
(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?
(2)2019年11月花店老板要求小华本月制作普通花束的总时间不少于3000分钟且不超过5000分钟,则小华该月收入最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?