题目内容
【题目】已知在平面直角坐标系中,直线分别交轴和轴于点.
(1)如图1,已知经过点,且与直线相切于点,求的直径长;
(2)如图2,已知直线分别交轴和轴于点和点,点是直线上的一个动点,以为圆心,为半径画圆.
①当点与点重合时,求证: 直线与相切;
②设与直线相交于两点, 连结. 问:是否存在这样的点,使得是等腰直角三角形,若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1) 的直径长为;(2) ①见解析;②存在这样的点和,使得是等腰直角三角形.
【解析】
(1)连接BC,证明△ABC为等腰直角三角形,则⊙P的直径长=BC=AB,即可求解;
(2)过点作于点,证明CE=ACsin45°=4×=2 =圆的半径,即可求解;
(3)假设存在这样的点,使得是等腰直角三角形,分点在线段上时和点在线段的延长线上两种情况,分别求解即可.
(1)如图3,连接BC,
∵∠BOC=90°,
∴点P在BC上,
∵⊙P与直线l1相切于点B,
∴∠ABC=90°,而OA=OB,
∴△ABC为等腰直角三角形,
则⊙P的直径长=BC=AB=3
(2)如图4过点作于点,
图4
将代入,得,
∴点的坐标为.
∴,
∵,
∴.
∵点与点重合,
又的半径为,
∴直线与相切.
②假设存在这样的点,使得是等腰直角三角形,
∵直线经过点,
∴的函数解析式为.
记直线与的交点为,
情况一:
如图5,当点在线段上时,
由题意,得.
如图,延长交轴于点,
图5
∵,
∴,
即轴,
∴点与有相同的横坐标,
设,则,
∴.
∵的半径为,
∴,
解得,
∴,
∴的坐标为.
情况二:
当点在线段的延长线上时,同理可得,的坐标为.
∴存在这样的点和,使得是等腰直角三角形.
练习册系列答案
相关题目