题目内容
【题目】如图①:在△ABC中,∠ACB=90,△ABC是等腰直角三角形,过点C在△ABC外作直线MN,AM⊥MN于点M,BN⊥MN于点N.
(1)求证:MN=AM+BN.
(2)如图②,若过点C在△ABC内作直线MN,AM⊥MN于点M,BN⊥MN于点N,则猜想AM、BN与MN之间有什么关系?请直接写出结论,并写出图②中的全等三角形.
【答案】(1)见解析;(2)MN=BN-AM (或AM=BN-MN或BN=AM+MN)
【解析】试题分析:
(1)由AM⊥MN于点M,BN⊥MN于点N可得∠AMC=∠BNC=∠ACB=90°,由此可得∠MAC+∠ACM=90°,∠ACM+∠BCN=90°,从而可得∠MAC=∠BCN,结合AC=BC,即可证得△ACM≌△CBN,即可得到MC=BN,AM=CN,结合MN=MC+CN可得MN=AM+BN;
(2)由题意和(1)同理可证△ACM≌△CBN,从而可得MN=BN-AM (或AM=BN-MN或BN=AM+MN).
试题解析:
(1)∵AM⊥MN, BN⊥MN,
∴∠AMC=∠CNB=∠ACB=90,
∴∠MAC+∠ACM=90,∠NCB+∠ACM=90,
∴∠MAC=∠NCB,
∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,
∴△AMC≌△CNB(AAS),
∴AM=NC ,MC=BN,
∵MN=NC+MC,
∴MN=AM+BN,
(2)∵AM⊥MN, BN⊥MN,
∴∠AMC=∠CNB=∠ACB=90,
∴∠MAC+∠ACM=90,∠NCB+∠ACM=90,
∴∠MAC=∠NCB,
∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,
∴△AMC≌△CNB(AAS),
∴AM=NC,MC=BN,
∵MN=MC-CN,
∴MN=BN-AM (或AM=BN-MN或BN=AM+MN).