题目内容
【题目】如图,正方形ABCD边长为2,E是AB的中点,以E为圆心,线段ED的长为半径作半圆,交直线AB于点M,N,分别以线段MD,ND为直径作半圆,则图中阴影部分的面积为_____________
【答案】2
【解析】
根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积,MN的半圆的直径,从而可知∠MDN=90°,此阴影部分的面积=△DMN的面积,在Rt△AED中,求出DE=,所以MN=2,然后利用三角形的面积公式求解即可.
解:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.
∵MN是半圆的直径,
∴∠MDN=90°.
在Rt△MDN中,MN2=MD2+DN2,
∴两个小半圆的面积=大半圆的面积.
∴阴影部分的面积=△DMN的面积.
在Rt△AED中,DE=,
∴MN=2DE=2,
∴阴影部分的面积=△DMN的面积=MNAD=×2×2=2.
故答案为:2.
练习册系列答案
相关题目