题目内容

如图,点E、F分别为正方形ABCD中AB、BC边的中点,连接AF、DE相交于点G,连接CG,则cos∠CGD=(   )
A.       B.      C.      D.
D
  
试题分析:把G延长交AB于H,

由题意可得△ADE≌△BAF∠FAB=∠EDA
∵∠FAB+∠DAG=90°,
∴∠EDA+∠DAG=90°,
∴AF⊥DE,
∴△AEG∽△DAG∽△DEA,
∵AE:AD=1:2,
∴EG:DG=1:4,
∵AB∥CD,
∴△HEG∽△CDG,
∴HE:CD=HG:CG=EG:DG=1:4,
∵CD=AB=2AE,
∴HE:AE=1:2,
∴H为AE的中点,
∴在Rt△AGE中,HG=AE,∠HEG=∠HE
∴∠HEG=∠HGE=∠DGC
设AB= 则AE=  DE= 
又EG:DG=1:4,EG=
cos∠CGD=cos∠AEG=
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网