题目内容
如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,-3).则经画图操作可知:△ABC的外心坐标应是
- A.(0,0)
- B.(1,0)
- C.(-2,-1)
- D.(2,0)
C
分析:首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.
解答:解:∵△ABC的外心即是三角形三边垂直平分线的交点,
∴作图得:
∴EF与MN的交点O′即为所求的△ABC的外心,
∴△ABC的外心坐标是(-2,-1).
故选C.
点评:此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.
分析:首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.
解答:解:∵△ABC的外心即是三角形三边垂直平分线的交点,
∴作图得:
∴EF与MN的交点O′即为所求的△ABC的外心,
∴△ABC的外心坐标是(-2,-1).
故选C.
点评:此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.
练习册系列答案
相关题目