题目内容
【题目】如图,已知 中, 是 边上的点,将 绕点 旋转,得到 .
(1)当 ∠=45° 时,求证: .
(2)在(1)的条件下,猜想 , , 有怎样的数量关系,并说明理由.
【答案】
(1)证明:∵△ABD绕点A旋转,得到△ACD′,
∴AD=AD′,∠DAD′=∠BAC=90°,
∵∠DAE=45°
∴∠EAD′=∠DAD′-∠DAE=90°-45°=45°,
∴∠EAD′=∠DAE, 在△AED与△AED′中 ,
∴△AED≌△AED′,
∴DE=D′E;
(2)解:BD2+CE==DE2 .
理由如下: 由(1)知△AED≌△AED′得到:ED=ED′,∠B=∠ACD′,
在△ABC中,AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∵△ABD绕点A旋转,得到△ACD′
∴BD=CD′,∠B=∠ACD′=45°,
∴∠BCD′=∠ACB+∠ACD′=45°+45°=90°,
在Rt△CD′E中,CE2+D′C2=D′E2 ,
∴BD2+CE2=DE2
【解析】(1)利用旋转的性质得AD=AD′,∠DAD′=∠BAC=90°,再计算出∠EAD′=∠DAE=45°,再利用“SAS”可得出△AED≌△AED′,根据全等三角形的性质证出DE=D′E。
(2)由(1)知△AED≌△AED′得到ED=ED′,∠B=∠ACD′,再根据等腰直角三角形的性质得∠B=∠ACB=45°,则根据旋转的性质得BD=CD′,∠B=∠ACD′=45°,所以∠BCD′=∠ACB+∠ACD′=90°,于是根据勾股定理得CE2+D′C2=D′E2 , 继而证出BD2+CE2==DE2。
【题目】为响应市教育局倡导的“阳光体育运动”的号召,全校学生积极参与体育运动.为了进一步了解学校九年级学生的身体素质情况,体育老师在九年级800名学生中随机抽取50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下所示:
组别 | 次数x | 频数(人数) |
第1组 | 80≤x<100 | 6 |
第2组 | 100≤x<120 | 8 |
第3组 | 120≤x<140 | a |
第4组 | 140≤x<160 | 18 |
第5组 | 160≤x<180 | 6 |
请结合图表完成下列问题:
(1)表中的a=;
(2)请把频数分布直方图补充完整;
(3)这个样本数据的中位数落在第组;
(4)若九年级学生一分钟跳绳次数(x)达标要求是:x<120为不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你估算学校九年级同学一分钟跳绳次数为优的人数为 .