题目内容
【题目】如图,已知直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=36°.
(1)求∠AOG的度数;
(2)若OG是∠AOF的平分线,那么OC是∠AOE的平分线吗?说明你的理由.
【答案】(1)∠AOG=54o;(2)OC是∠AOE的平分线,理由见解析.
【解析】
(1)根据对顶角的性质可得∠AOC=∠BOD=36°,利用垂直定义可得∠COG=90°,再计算出∠AOG的度数即可;(2)根据角平分线定义以及垂直定义可得∠COA=∠DOF,再根据对顶角相等可得∠DOF=∠COE,进而得出∠AOC=∠COE,即可得到OC平分∠AOE.
解:(1)∵AB、CD相交于点O,
∴∠AOC=∠BOD=36°,
∵OG⊥CD,
∴∠COG=90°,
即∠AOC+∠AOG=90°,
∴∠AOG=90°﹣∠AOC=90°﹣36o=54o;
(2)OC是∠AOE的平分线.
∵OG是∠AOF的角平分线,
∴∠AOG=∠GOF,
∵OG⊥CD,
∴∠COG=∠DOG=90°,
∴∠COA=∠DOF,
又∵∠DOF=∠COE,
∴∠AOC=∠COE,
∴OC平分∠AOE.
练习册系列答案
相关题目