题目内容
【题目】小明想知道一堵墙上点A的高度(AO⊥OD),但又没有直接测量的工具,于是设计了下面的方案,请你先补全方案,再说明理由.
第一步:找一根长度大于OA的直杆,使直杆靠在墙上,且顶端与点A重合,记下直杆与地面的夹角∠ABO;
第二步:使直杆顶端竖直缓慢下滑,直到∠ =∠ .标记此时直杆的底端点D;
第三步:测量 的长度,即为点A的高度.
说明理由:
【答案】OCD,ABO;OD;理由见解析
【解析】
根据全等三角形的判定和性质定理即可得到结论.
解:第一步:找一根长度大于OA的直杆,使直杆靠在墙上,且顶端与点A重合,记下直杆与地面的夹角∠ABO;
第二步:使直杆顶端竖直缓慢下滑,直到∠OCD=∠ABO.标记此时直杆的底端点D;
第三步:测量OD的长度,即为点A的高度.
理由:在△AOB与△DOC中,,
∴△AOB≌△DOC(AAS),
∴OA=OD.
故答案为:OCD,ABO,OD.
练习册系列答案
相关题目
【题目】本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动小江统计了班级30名同学四月份的诗词背诵数量,具体数据如表所示:
诗词数量首 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
人数 | 3 | 4 | 4 | 5 | 7 | 5 | 1 | 1 |
那么这30名同学四月份诗词背诵数量的众数和中位数分别是
A. 11,7 B. 7,5 C. 8,8 D. 8,7