题目内容
【题目】在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.
小聪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.24 | 2.83 | 2.83 | 2.24 | 0 | |
y2/cm | 0 | 2.45 | 3.46 | 4.24 | 4.90 | 5.48 | 6 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;
(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为 cm.
【答案】(1)3;(2)作图见解析;(3)4.5.
【解析】
(1)因为PC=3时,PA=PB=3,推出PC是⊙O的半径即可解决问题;
(2)利用描点法画出函数图象即可;
(3)利用数形结合的思想解决问题即可.
(1)因为PC=3时,PA=PB=3,
∴PC是⊙O的半径,
∴PC=3cm,即x=3时,y1=3.
(2)利用描点法画出函数图象即可.
(3)结合图象可知:当∠ACP=30°时,AP=AC=×AB=1.50cm.
根据对称性,结合图象可知:当∠CAP=30°时,PB=1.50cm,PA=4.50cm.
【题目】高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:
收费出口编号 | |||||
通过小客车数量(辆) | 260 | 330 | 300 | 360 | 240 |
在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.