题目内容
(2012•金平区模拟)在一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同.
(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数不小于22的概率.
(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数不小于22的概率.
分析:(1)由在7张卡片中共有两张卡片写有数字1,利用概率公式求解即可求得答案;
(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与这个两位数不小于22的情况,再利用概率公式求解即可求得答案.
(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与这个两位数不小于22的情况,再利用概率公式求解即可求得答案.
解答:解:(1)∵在7张卡片中共有两张卡片写有数字1,
∴从中任意抽取一张卡片,卡片上写有数字1的概率是
;
(2)组成的所有两位数列表得:
∵共有12种等可能的结果,这个两位数不小于22的有8种情况
∴这个两位数不小于22的概率为:
=
.
∴从中任意抽取一张卡片,卡片上写有数字1的概率是
2 |
7 |
(2)组成的所有两位数列表得:
1 | 2 | 3 | 4 | |
1 | 11 | 21 | 31 | 41 |
2 | 12 | 22 | 32 | 42 |
3 | 13 | 23 | 33 | 43 |
∴这个两位数不小于22的概率为:
8 |
12 |
2 |
3 |
点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
练习册系列答案
相关题目