题目内容
17、用反证法证明三角形中至少有一个角不小于60°,第一步应假设
三角形的三个内角都小于60°
.分析:熟记反证法的步骤,从命题的反面出发假设出结论,直接填空即可.
解答:解:∵用反证法证明三角形中至少有一个角不小于60°,
∴第一步应假设结论不成立,
即三角形的三个内角都小于60°.
故答案为:三角形的三个内角都小于60°.
∴第一步应假设结论不成立,
即三角形的三个内角都小于60°.
故答案为:三角形的三个内角都小于60°.
点评:此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.
练习册系列答案
相关题目
用反证法证明“三角形中必有一个角不大于60°”,先假设这个三角形中( )
A、有一个内角大于60° | B、每一个内角都大于60° | C、有一个内角小于60° | D、至少有一个内角不大于60° |