题目内容
【题目】两条平行直线上各有个点,用这对点按如下的规则连接线段:①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;②符合①要求的线段必须全部画出;图1展示了当时的情况,此时图中三角形的个数为0;图2展示了当时的一种情况,此时图中三角形的个数为2;图3展示了当时的一种情况,此时图中三角形的个数为4;试猜想当时,按照上述规则画出的图形中,三角形最少有____个
【答案】4034
【解析】
分析可得,当n=1时的情况,此时图中三角形的个数为0,有0=2(1-1);当n=2时的一种情况,此时图中三角形的个数为2,有2=2(2-1);…故当有n对点时,最少可以画2(n-1)个三角形;当n=2018时,按上述规则画出的图形中,最少有2×(2018-1)=4034个三角形.
当n=1时的情况,此时图中三角形的个数为0,有0=2(1-1);当n=2时的一种情况,此时图中三角形的个数为2,有2=2(2-1);…故当有n对点时,最少可以画2(n-1)个三角形;当n=2018时,2×(20181)= 4034个.
练习册系列答案
相关题目