题目内容
【题目】计算下列各式的值:
(1)( + )﹣
(2)(﹣3)2﹣|﹣ |+ ﹣
(3)x2﹣121=0
(4)(x﹣5)3+8=0.
【答案】
(1)解:原式= + ﹣ =
(2)解:原式=9﹣ + ﹣3=6
(3)解:方程变形得:x2=121,
开方得:x=±11
(4)解:方程变形得:(x﹣5)3=﹣8,
开立方得:x﹣5=﹣2,
解得:x=3
【解析】(1)原式去括号合并即可得到结果;(2)原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用算术平方根定义计算即可得到结果;(3)方程变形后,利用平方根定义开方即可求出解;(4)方程变形后,利用立方根定义开立方即可求出解.
【考点精析】关于本题考查的平方根的基础和立方根,需要了解如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟);一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根;如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根);一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零才能得出正确答案.
练习册系列答案
相关题目
【题目】某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
组号 | 分组 | 频数 |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值.
(2)若用扇形统计图来描述,求分数在8≤m<9内所对应的扇形的圆心角的度数.
(3)将在第一组内的两名选手记为A1,A2,在第四组内的两名选手记为B1,B2, 从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率.