题目内容

如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM与于点D,交BN于点C,F是CD的中点,连接OF.
(1)求证:ODBE;
(2)猜想:OF与CD有何数量关系?并说明理由.
(1)证明:连接OE,
∵AM、DE是⊙O的切线,
∴DA=DE,∠OAD=∠OED=90°,
又∵OD=OD,
在△AOD和△EOD中,
DA=DE
OD=OD

∴△AOD≌△EOD,
∴∠AOD=∠EOD=
1
2
∠AOE,
∵∠ABE=
1
2
∠AOE,
∴∠AOD=∠ABE,
∴ODBE;

(2)OF=
1
2
CD.
理由:连接OC,
∵BC、CE是⊙O的切线,
∴∠OCB=∠OCF,
∵AMBN,
∴∠ADO+∠EDO+∠OCB+∠OCE=180°,
由(1)得∠ADO=∠EDO,
∴2∠EDO+2∠OCE=180°,
即∠EDO+∠OCE=90°,
在Rt△DOC中,
∵F是DC的中点,
∴OF=
1
2
CD.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网