题目内容

【题目】(1)阅读下面材料:

点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.

当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,

①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;

②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;

③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;

综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.

(2)回答下列问题:

①数轴上表示2和5的两点之间的距离是  ,数轴上表示﹣2和﹣5的两点之间的距离是  ,数轴上表示1和﹣3的两点之间的距离是  

②数轴上表示x和﹣1的两点A和B之间的距离是  ,如果|AB|=2,那么x为  

③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是  

④解方程|x+1|+|x﹣2|=5.

【答案】①3,3,4②|x+1|,1或-3③-1≤x≤2④x=3或x=-2

【解析】试题分析:①②直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运用绝对值即可求任意两点间的距离.

③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围.

根据题意分三种情况:当x﹣1时,当﹣1<x≤2时,当x2时,分别求出方程的解即可

试题解析:数轴上表示25的两点之间的距离是|2﹣5|=3;

数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;

数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4

②数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或

-3.

根据题意得x+1≥0且x-2≤0,则-1≤x≤2;

解方程|x+1|+|x﹣2|=5.

当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3

当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2

当x+1与x-2异号,则等式不成立.

所以答案为:3或-2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网