题目内容
【题目】如图①,将一副三角板的两个锐角顶点放到一块,∠AOB=45°,∠COD=30°,OM,ON分别是∠AOC,∠BOD的平分线.
(1)当∠COD绕着点O逆时针旋转至射线OB与OC重合时(如图②),则∠MON的大小为________;
(2)如图③,在(1)的条件下,继续绕着点O逆时针旋转∠COD,当∠BOC=10°时,求∠MON的大小,写出解答过程;
(3)在∠COD绕点O逆时针旋转过程中,∠MON=________°.
【答案】(1)37.5°;(2)∠MON=37.5°;(3)37.5°
【解析】试题分析:(1)、根据角平分线的性质得出∠NOC=15°,∠MOC=22.5°,最后根据∠MON=∠NOC+∠MOC得出答案;(2)、首先根据∠BOC的度数求出∠AOC和∠BOD的度数,然后根据角平分线的性质求出∠BON和∠MOB的度数,最后根据∠MON=∠MOB+∠BON得出答案;(3)、根据题意得出∠AOC=∠AOB+∠BOC,∠BOD=∠COD+∠BOC,根据角平分线的性质得出∠MOC= (∠AOB+∠BOC),∠CON=∠BOD-∠BOC,最后根据∠MON=∠MOC+∠CON得出答案.
试题解析:解:(1)、37.5°;
(2)、当绕着点O逆时针旋转∠COD,∠BOC=10°时,∠AOC=55°,∠BOD=40°,
∴∠BON=∠BOD=20°, ∠MOB=∠AOC-∠BOC=27.5°-10°=17.5°,
∴∠MON=∠MOB+∠BON=17.5°+20°=37.5°;
(3)、解析:∠AOC=∠AOB+∠BOC,∠BOD=∠COD+∠BOC,
又OM,ON分别是∠AOC,∠BOD的平分线,∠AOB=45°,∠COD=30°,
∴∠MOC=∠AOC= (∠AOB+∠BOC),
∠CON=∠BOD-∠BOC,
∴∠MON=∠MOC+∠CON= (∠AOB+∠BOC)+∠BOD-∠BOC=∠AOB+ (∠BOD-∠BOC)=∠AOB+∠COD=37.5°.