题目内容
13、在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD=1,AB=3,则S△ADE:S△ABC=
1:9
.分析:根据题意,先求证△ADE∽△ABC,因为相似三角形的面积比是相似比的平方,则可得出S△ADE:S△ABC的比.
解答:解:∵AD=1,AB=3,
∴AD:AB=1:3,
∵DE∥BC,
∴△ADE∽△ABC,
∵相似三角形的面积比是相似比的平方,
∴S△ADE:S△ABC=1:9.
∴AD:AB=1:3,
∵DE∥BC,
∴△ADE∽△ABC,
∵相似三角形的面积比是相似比的平方,
∴S△ADE:S△ABC=1:9.
点评:熟悉相似三角形的性质:相似三角形的面积比是相似比的平方.
练习册系列答案
相关题目