题目内容
【题目】如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.
(1)求证:四边形DEBF是菱形;
(2)请判断四边形AGBD是什么特殊四边形? 并加以证明;
(3)若AD=1,求四边形AGCD的面积.
【答案】(1)见解析;(2)AGBD是矩形,理由见解析;(3)
【解析】
(1)由题意先证明△ADE是等边三角形,再利用菱形的判定方法进行分析证明即可;
(2)根据题意直接运用矩形的判定方法进行分析证明即可;
(3)由题意分别求出BD和CG的值,运用梯形的面积公式求解即可.
解:(1)∵AB=2AD,E是AB的中点,
∴AD=AE=BE,
又∵∠DAB=60°,
∴△ADE是等边三角形,故DE=BE,
同理可得DF=BF,
∵平行四边形ABCD中,点E、F分别是AB、CD的中点,
∴BE=DF,
∴DE=BE=BF=DF
即证得四边形DEBF是菱形.
(2)AGBD是矩形.
理由如下:∵△ADE是等边三角形,
∴∠DEA=60°,
又∵DE=BE,
∴∠EBD=∠EDB =30°,
∴∠ADB=60°+30°=90°,
又∵AG∥BD,AD∥CG,
∴四边形AGBD是矩形.
(3)在Rt△ABD中,
∵AD=1,∠DAB=60°,
∴AB=2,BD==,
则AG=,CG==2,
故四边形AGCD的面积为.
【题目】某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售如下:
每人销售件数 | 1800 | 510 | 250 | 210 | 150 | 120 |
人数 | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求这15位营销人员该月销售量的平均数、中位数和众数.
(2)假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理?为什么?如不合理,请你制定一个合理的销售定额,并说明理由.