题目内容
桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.(1)请用列表或画树状图的方法求两数和为5的概率;
(2)若甲与乙按上述方式作游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,这个游戏对双方公平吗?
分析:本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.
解答:解:(1)列表如下:
(4分)
由列表可得:P(数字之和为5)=
(6分)
(2)因为P(甲胜)=
,P(乙胜)=
(8分),
∴甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:12÷3=4分.(10分)
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
由列表可得:P(数字之和为5)=
1 |
4 |
(2)因为P(甲胜)=
1 |
4 |
3 |
4 |
∴甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:12÷3=4分.(10分)
点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目