题目内容
【题目】如图,在平面直角坐标系中,点的坐标是,动点从原点O出发,沿着轴正方向移动,以为斜边在第一象限内作等腰直角三角形,设动点的坐标为.
(1)当时,点的坐标是 ;当时,点的坐标是 ;
(2)求出点的坐标(用含的代数式表示);
(3)已知点的坐标为,连接、,过点作轴于点,求当为何值时,当与全等.
【答案】(1) (2,2);(,); (2) P(,);(3) .
【解析】
(1) 当时,三角形AOB为等腰直角三角形, 所以四边形OAPB为正方形,直接写出结果;当时,作PN⊥y轴于N,作PM⊥x轴与M,求出△BNP≌△AMP,即可得到ON+OM=OB-BN+OA+AM=OB+OA,即可求出;
(2) 作PE⊥y轴于E,PF⊥x轴于F,求出△BEP≌△AFP,即可得到OE+OF=OB+BE+OA+AF=OB+OA,即可求出;
(3) 根据已知求出BC值,根据上问得到OQ= ,△PQB≌△PCB,BQ=BC,因为OQ=BQ+OB,即可求出t.
(1) 当时,三角形AOB为等腰直角三角形如图
所以四边形OAPB为正方形,所以P(2,2)
当时,如图
作PN⊥y轴于N,作PM⊥x轴与M
∴四边形OMPN为矩形
∵∠BPN+∠NPA=∠APM+∠NPA=90°
∴ ∠BPN =∠APM
∵∠BNP=∠AMP
∴ △BNP≌△AMP
∴PN=PM BN=AM
∴四边形OMPN为正方形,OM=ON=PN=PM
∴ON+OM=OB-BN+OA+AM=OB+OA=2+1=3
∴OM=ON=PN=PM=
∴ P(,)
(2) 如图
作PE⊥y轴于E,PF⊥x轴于F,则四边形OEPF为矩形
∵∠BPE+∠BPF=∠APF+∠BPF=90°
∴ ∠BPE =∠APF
∵∠BEP=∠AFP
∴ △BEP≌△AFP
∴PE=PF BE=AF
∴四边形OEPF为正方形,OE=OF=PE=PF
∴OE+OF=OB+BE+OA+AF=OB+OA=2+t
∴ OE=OF=PE=PF=
∴ P(,);
(3) 根据题意作PQ⊥y轴于Q,作PG⊥x轴与G
∵ B(0,2) C(1,1)
∴ BC=
由上问可知P(,),OQ=
∵△PQB≌△PCB
∴BC=QB=
∴ OQ=BQ+OB=+2=
解得 t=.