题目内容

【题目】(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点ADE在同一直线上,连接BE,易证△BCE≌△ACD.则

①∠BEC=______°;②线段ADBE之间的数量关系是______.

(2)拓展研究:

如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点ADE在同一直线上,若AE=15,DE=7,求AB的长度.

(3)探究发现:

如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.

【答案】(1)①120°,②AD=BE(2)17(3)13

【解析】(1)①120°,②AD=BE

(2)

(3)如下图所示

由(2)知△BEC≌△APC,

∴BE=AP=5,∠BEC=∠APC=150°,

∵∠APD=30°,AP=5,CP=4,DP=8,∠APD=30°,∠EPC=60°,

∴∠BED=∠BEC-∠PEC=90°,∠DPC=120°

又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上

∴DE=DP+PE=8+4=12,BE=5,

∴BD的长为13

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网