题目内容

【题目】如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.

(1)求证:∠A+∠C=∠B+D;

(2)如图2,若∠CAB和∠BDC的平分线APDP相交于点P,且与CD、AB分别相交于点M、N.

以线段AC为边的“8字型”有   个,以点O为交点的“8字型”有   

若∠B=100°,∠C=120°,求∠P的度数;

若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P∠B、∠C之间存在的数量关系,并证明理由.

【答案】(1)证明见解析;(2)3, 4;∠P=110°;3∠P=∠B+2∠C,理由见解析.

【解析】

(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;

(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;

根据(1)的结论M为交点“8字型中,∠P+∠CDP=∠C+∠CAP,N为交点“8字型中,∠P+∠BAP=∠B+∠BDP,两等式相加得到2∠P+BAP+CDP=B+C+CAP+BDP,APDP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而P=(B+C),然后将∠B=100,∠C=120代入计算即可;

③与②的证明方法一样得到3∠P=∠B+2∠C.

(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,

∵∠AOC=∠BOD,

∴∠A+∠C=∠B+∠D;

(2)解:以线段AC为边的“8字型”有3个:

以点O为交点的“8字型”有4个:

M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,

N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP

∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,

∵AP、DP分别平分∠CAB和∠BDC,

∴∠BAP=∠CAP,∠CDP=∠BDP,

∴2∠P=∠B+∠C,

∵∠B=100°,∠C=120°,

∴∠P=(∠B+∠C)=(100°+120°)=110°;

③3∠P=∠B+2∠C,其理由是:

∵∠CAP=∠CAB,∠CDP=∠CDB,

∴∠BAP=∠CAB,∠BDP=∠CDB,

M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,

N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP

∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),

∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).

∴2(∠C﹣∠P)=∠P﹣∠B,

∴3∠P=∠B+2∠C.

故答案为:(1)证明见解析;(2)3, 4;∠P=110°;3∠P=∠B+2∠C,理由见解析.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网