题目内容
【题目】阅读下面材料:
我们知道一次函数(,是常数)的图象是一条直线,到高中学习时,直线通常写成 (,是常数)的形式,点到直线的距离可用公式计算.
例如:求点到直线的距离.
解:∵
∴其中
∴点到直线的距离为:
根据以上材料解答下列问题:
(1)求点到直线的距离;
(2)如图,直线沿轴向上平移2个单位得到另一条直线,求这两条平行直线之间的距离.
【答案】(1);(2)
【解析】
根据题意则,将点Q代入公式即可解得.
根据题意直线沿轴向上平移2个单位得到另一条直线为,
在直线上任意取一点,当时,.代入P点即可解得.
解:(1)∵,
∴.
∵点,
∴.
∴点到到直线的距离为;
(2)直线沿轴向上平移2个单位得到另一条直线为,
在直线上任意取一点,
当时,.
∴.
∵直线,
∴
∴,
∴两平行线之间的距离为.
练习册系列答案
相关题目
【题目】某公司要购买一种笔记本供员工学习时使用.在甲文具店不管一次购买多少本,每本价格为2元.在乙文具店购买同样的笔记本,一次购买数量不超过20时,每本价格为2.4元;一次购买数量超过20时,超过部分每本价格为1.8元.
设在同一家文具店一次购买这种笔记本的数量为x(x为非负整数).
(Ⅰ)根据题意,填写下表:
一次购买数量(本) | 10 | 20 | 30 | 40 | … |
甲文具店付款金额(元) | 20 | 60 | … | ||
乙文具店付款金额(元) | 24 | 66 | … |
(Ⅱ)设在甲文具店购买这种笔记本的付款金额为元,在乙文具店购买这种笔记本的付款金额为元,分别写出,关于的函数关系式;
(Ⅲ)当时,在哪家文具店购买这种笔记本的花费少?请说明理由.