题目内容
【题目】如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HEHB=4-2,BD、AF交于M,当E在线段CD(不与C、D重合)上运动时,下列四个结论:①BE⊥GD;②AF、GD所夹的锐角为45°;③GD=AM;④若BE平分∠DBC,则正方形ABCD的面积为4,其中结论正确的是______(填序号)
【答案】①②③④
【解析】
①由已知条件可证得△BEC≌△DGC,∠EBC=∠CDG,因为∠BDC+∠DBH+∠EBC=90°,所以∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正确;②若以BD为直径作圆,那么此圆必经过A、B、C、H、D五点,根据圆周角定理即可得到∠AHD=45°,所以②的结论也是正确的.③此题要通过相似三角形来解;由②的五点共圆,可得∠BAH=∠BDH,而∠ABD=∠DBG=45°,由此可判定△ABM∽△DBG,根据相似三角形的比例线段即可得到AM、DG的比例关系;④若BE平分∠DBC,那么H是DG的中点;易证得△ABH∽△BCE,得BDBC=BEBH,即BC2=BEBH,因此只需求出BEBH的值即可得到正方形的面积,可先求出BE、EH的比例关系,代入已知的乘积式中,即可求得BEBH的值,由此得解.
解:①正确,证明如下:
∵BC=DC,CE=CG,∠BCE=∠DCG=90°,
∴△BEC≌△DGC,∴∠EBC=∠CDG,
∵∠BDC+∠DBH+∠EBC=90°,
∴∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正确;
②由于∠BAD、∠BCD、∠BHD都是直角,因此A、B、C、D、H五点都在以BD为直径的圆上;
由圆周角定理知:∠DHA=∠ABD=45°,故②正确;
③由②知:A、B、C、D、H五点共圆,则∠BAH=∠BDH;
又∵∠ABD=∠DBG=45°,
∴△ABM∽△DBG,得AM:DG=AB:BD=1:,即DG=AM;
故③正确;
④过H作HN⊥CD于N,连接EG;
若BH平分∠DBG,且BH⊥DG,已知:BH垂直平分DG;
得DE=EG,H是DG中点,HN为△DCG的中位线;
设CG=x,则:HN=x,EG=DE=x,DC=BC=(+1)x;
∵HN⊥CD,BC⊥CD,
∴HN∥BC,
∴∠NHB=∠EBC,∠ENH=∠ECB,
∴△BEC∽△HEN,则BE:EH=BC:HN=2+2,即EH=;
∴HEBH=BH=4-2,即BEBH=4;
∵∠DBH=∠CBE,且∠BHD=∠BCE=90°,
∴△span>DBH∽△EBC,得:DBBC=BEBH=4,
即BC2=4,得:BC2=4,即正方形ABCD的面积为4;
故④正确;
故答案为:①②③④.