题目内容
【题目】如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.
(1)如图1,求⊙O的半径;
(2)如图1,若点E是BC的中点,连接PE,求PE的长度;
(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.
【答案】(1)2;(2)2;(3)证明见解析.
【解析】
试题(1)由切线的性质和正方形的判定与性质得出⊙O的半径即可;
(2)由垂径定理得出OE⊥BC,∠OCE=45°,再用勾股定理即可得出结论;
(3)在AB上截取BF=BM,利用(1)中所求,得出∠ECP=135°,再利用全等三角形的判定与性质得出即可.
试题解析:(1)如图1,连接OD,OC,∵PC、PD是⊙O的两条切线,C、D为切点,∴∠ODP=∠OCP=90°,∵四边形ABCD是⊙O的内接正方形,∴∠DOC=90°,OD=OC,∴四边形DOCP是正方形,∵AB=4,∠ODC=∠OCD=45°,∴DO=CO=DCsin45°=×4=;
(2)如图1,连接EO,OP,∵点E是BC的中点,∴OE⊥BC,∠OCE=45°,则∠E0P=90°,∴EO=EC=2,OP=CO=4,∴PE==;
(3)如图2,在AB上截取BF=BM,∵AB=BC,BF=BM,∴AF=MC,∠BFM=∠BMF=45°,∵∠AMN=90°,∴∠AMF+∠NMC=45°,∠FAM+∠AMF=45°,∴∠FAM=∠NMC,∵由(1)得:PD=PC,∠DPC=90°,∴∠DCP=45°,∴∠MCN=135°,∵∠AFM=180°﹣∠BFM=135°,在△AFM和△CMN中,∵∠FAM=∠CMN,AF=MC,∠AFM=∠MCN,∴△AFM≌△CMN(ASA),∴AM=MN.