题目内容
【题目】如图,在等边△ABC中,M是边BC延长线上一点,连接AM交△ABC的外接圆于点D,延长BD至N,使得BN=AM,连接CN、MN,
(1)求证:△CMN是等边三角形;
(2)判断CN与⊙O的位置关系,并说明理由;
(3)若AD:AB=3:4,BN=4,求等边△ABC的边长.
【答案】(1)证明见解析;(2)CN是⊙O的切线,理由见解析;(3)等边△ABC的边长是3.
【解析】试题分析:(1)根据全等三角形的判定定理得到△BCN≌△ACM,由全等三角形的性质得到CN=CM,∠BCN=∠ACM,求得∠MCN=∠ACB=60°,即可得到结论;
(2)根据全等三角形的性质得到∠ACO=∠BCO=ACB=30°,根据角的和差得到∠OCN=90°,根据切线的判定定理得到结论;
(3)根据相似三角形的判定和性质即可得到结论.
试题解析:解:(1)在△BCN与△ACM中,∵BC=AC,∠CBN=∠CAM,BN=AM,∴△BCN≌△ACM,∴CN=CM,∠BCN=∠ACM,∴∠BCN﹣∠ACN=∠ACM﹣∠ACN,即∠MCN=∠ACB=60°,∴△CMN是等边三角形;
(2)连接OA.OB.OC,在△BOC与△AOC中,∵OA=OB,AC=BC,OC=OC,∴△BOC≌△AOC,∴∠ACO=∠BCO=∠ACB=30°,∵∠ACB=∠MCN=60°,∴∠ACN=60°,∴∠OCN=90°,∴OC⊥CN,∴CN是⊙O的切线;
(3)∵∠ADB=∠ACB=60°,∴∠ADB=∠ABC,∵∠BAD=∠MAB,∴△ABD∽△AMB,∴ ,∵AM=BN=4,∴AB=3,∴等边△ABC的边长是3.
练习册系列答案
相关题目