题目内容
【题目】如图,在△ABC中,AD是BC边上的中线,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)过点A作AM⊥BC于点M,求DE:AM的值;
(3)若S△FCD=5,BC=10,求DE的长.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)利用D是BC边上的中点,DE⊥BC可以得到∠EBC=∠ECB,而由AD=AC可以得到∠ADC=∠ACD,再利用相似三角形的判定定理,就可以证明题目结论;
(2)根据相似三角形的性质和等腰三角形的性质定理,解答即可;
(3)利用相似三角形的性质就可以求出三角形ABC的面积,然后利用面积公式求出AM的值,结合,即可求解.
(1)∵D是BC边上的中点,DE⊥BC,
∴BD=DC,∠EDB=∠EDC=90°,
∵DE=DE,
∴△BDE≌△EDC(SAS),
∴∠B=∠DCE,
∵AD=AC,
∴∠ADC=∠ACB,
∴△ABC∽△FCD;
(2)∵AD=AC,AM⊥DC,
∴DM=DC,
∵BD=DC,
∴,
∵DE⊥BC,AM⊥BC,
∴DE∥AM,
∴.
(3)过点A作AM⊥BC,垂足是M,
∵△ABC∽△FCD,BC=2CD,
∴,
∵S△FCD=5,
∴S△ABC=20,
又∵BC=10,
∴AM=4.
∵DE∥AM,
∴
∴,
∴DE=.
【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
请根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)请补全频数分布直方图;
(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?