题目内容

如图,⊙O的圆心在坐标原点,半径为2,直线y=x+b(b>0)与⊙O交于A、B两点,点O关于直线y=x+b的对称点O′,
(1)求证:四边形OAO′B是菱形;
(2)当点O′落在⊙O上时,求b的值.
(1)证明:连接OO′,
∵点O关于直线y=x+b的对称,
∴直线y=x+b是线段OO′的垂直平分线,
∴AO=AO′,BO=BO′,
又∵OA,OB是⊙O的半径,
∴OA=OB,
∴AO=AO′=BO=BO′,
∴四边形OAO′B是菱形.

(2)如图,菱形OAO'B的对角线交点为点M,
当点O′落在圆上时,
∵OM=
1
2
OO′=1,
∵设直线y=x+b与x轴、y轴的交点坐标分别是N(-b,0),P(0,b),
∴△ONP为等腰直角三角形,
∴∠ONP=45°,
∵四边形OAO′B是菱形,
∴OM⊥PN,
∵∠ONP=45°=∠OPN,
∴OM=PM=MN=1,
在Rt△POM中,由勾股定理得:OP=
2

即b=
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网