题目内容

【题目】如图,E是正方形ABCD的边CD的中点,AE的垂直平分线分别交AE、BCH、G.CG=7,则正方形ABCD的面积等于_______

【答案】64

【解析】

连接AG、EG,设CE=x,则AB=BC=2x,BG=2x-7,根据线段垂直平分线的性质得出AG=EG,根据勾股定理得出方程,解方程即可求出边长,即可得出面积.

连接AG、EG,如图所示:

∵四边形ABCD是正方形,
∴AB=BC=CD,
∵E是正方形ABCD的边CD的中点,
∴CE=CD,
设CE=x,则AB=BC=2x,BG=2x-7,
∵AE的垂直平分线分别交AE、BC于H、G,
∴AG=EG,
在Rt△AGH和Rt△EGH中,
根据勾股定理得:AG2=AB2+BG2,EG2=CE2+CG2
∴(2x)2+(2x-7)2=x2+72
解得:x=4,
∴AB=8,
∴正方形ABCD的面积=AB2=82=64.
故答案是:64.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网