题目内容
【题目】如图,∠BAD=∠CAE=90o,AB=AD,AE=AC, AF⊥CF,垂足为F.
(1)若AC=10,求四边形ABCD的面积;
(2)求证:AC平分∠ECF;
(3)求证:CE=2AF .
【答案】(1)50(2)证明见解析(3)证明见解析
【解析】试题分析:(1)根据条件证明△ABC≌△ADE,然后四边形ABCD的面积可转化为等腰直角△ACE的面积,然后利用三角形的面积公式计算即可;(2)根据条件证明∠ACB=∠ACE=45°即可;(3))过点A作AG⊥CG,垂足为点G,利用角的平分线的性质证得AF=AG,利用直角三角形斜边上的中线的性质和等腰三角形的性质证得CG=AG=GE,即可得出结论.
试题解析:(1)∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD
∴∠BAC=∠EAD
在△ABC和△ADE中
∴△ABC≌△ADE(SAS)
∵
∴
(2)∵△ACE是等腰直角三角形,
∴∠ACE=∠AEC=45°,
由△ABC≌△ADE得:
∠ACB=∠AEC=45°,
∴∠ACB=∠ACE,
∴AC平分∠ECF
(3)过点A作AG⊥CG,垂足为点G
∵AC平分∠ECF,AF⊥CB,
∴AF=AG,
又∵AC=AE,
∴∠CAG=∠EAG=45°,
∴∠CAG=∠EAG=∠ACE=∠AEC=45°,
∴CG=AG=GE,
∴CE=2AG,
∴CE="2AF"
练习册系列答案
相关题目