题目内容

【题目】已知有理数a,b满足ab<0,|a|>|b|,2(a+b)=|b﹣a|,则 的值为

【答案】-3
【解析】解:∵有理数a,b满足ab<0, ∴a>0,b<0或a<0,b>0,
①当a>0,b<0时,
∵|a|>|b|,
∴b﹣a<0,
∵2(a+b)=|b﹣a|,
∴2a+2b=a﹣b,
a=﹣3b;
=﹣3;
②当a<0,b>0时,
∵|a|>|b|,
∴b﹣a>0,
∵2(a+b)=|b﹣a|,
∴2a+2b=b﹣a,
3a=﹣b;
=﹣3
所以答案是:﹣3.
【考点精析】认真审题,首先需要了解绝对值(正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离),还要掌握代数式求值(求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网