题目内容
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、象限内的,两点,与轴交于点.
(1)求该反比例函数和一次函数的解析式;
(2)直接写出当时,的取值范围;
(3)长为2的线段在射线上左右移动,若射线上存在三个点使得为等腰三角形,求的值.
【答案】(1),;(2)或;(3)-1
【解析】
(1)利用待定系数法即可解决问题.
(2)利用图象法,写出y1D的图象在y2的图象上方的对应的自变量的取值即可.
(3)如图2中,分别以E,F为圆心EF为半径画圆,两圆在EF的上方交于点N,当点N在射线CA上时,射线CA上存在三个点P使得△PEF为等腰三角形.解直角三角形求出CH,EH即可.
解:(1)∵A(3,5),B(a,-3)在的图象上,
∴m=15,a=-5,
∴A(3,5),B(-5,-3),
把A,B的坐标代入y1=kx+b中,
得,解得:
(2)观察图1可知:当y1>y2时,x的取值范围为:x>3或-5<x<0.
(3)如图2中,分别以E,F为圆心EF为半径画圆,两圆在EF的上方交于点N,当点N在射线CA上时,射线CA上存在三个点P使得△PEF为等腰三角形.
作NH⊥EF于H.
∵NE=EF=NF,NH⊥EF,
∴EH=HF=1,NH=,
∵直线AC的解析式为y=x+2,
∴∠ACF=45°,
∴CH=NH=,
∴EC=CH-EH=-1
【题目】小王是“新星厂”的一名工人,请你阅读下列信息:
信息一:工人工作时间:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;
信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:
生产甲种产品数(件) | 生产乙种产品数(件) | 所用时间(分钟) |
10 | 10 | 350 |
30 | 20 | 850 |
信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元;
信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元.请根据以上信息,解答下列问题:
(1)小王每生产一件甲种产品和一件乙种产品分别需要多少分钟;
(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?
【题目】在学校组织的“学习强国”阅读知识竞赛中,每班参加比赛的人数相同,成绩分为四个等级,其中相应等级的得分依次记为分,分,分和分.年级组长张老师将班和班的成绩进行整理并绘制成如下的统计图:
(1)在本次竞赛中,班级及以上的人数有多少?
(2)请你将下面的表格补充完整:
平均数(分) | 中位数(分) | 众数(分) | 级及以上人数 | |
班 | ||||
班 | > |
【题目】(8分)某中学数学活动小组为了调查居民的用水情况,从某社区的户家庭中随机抽取了户家庭的月用水量,结果如下表所示:
月用水量(吨) | |||||||
户数 |
(1)求这户家庭月用水量的平均数、众数和中位数;
(2)根据上述数据,试估计该社区的月用水量;
(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为(吨),家庭月用水量不超过(吨)的部分按原价收费,超过(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由.